
INSIDE THE ULTIMA ONLINE GOLD DEMO
 - The Fatigue Algorithm

GOAL

It’s our goal to get a deep understanding of how the Ultima Online Gold Demo works. This

demo is a representation of the rule set from the Ultima Online Second Age Era.

There is proof that some people have already reversed this demo partially or as a whole,

however so far no tools or knowledge has been published. This project is to overcome those

shortcomings.

URL’s with some proof for this:

http://www.runuo.com/forums/general-discussion/94767-help-m-files.html

http://azaroth.org/2008/12/31/your-topic/ (posting by Faust)

If we understand the demo there is a big chance we can alter the demo and even create our

own demo. By default mounting horses is not possible in the demo, but what if we can alter

the demo and unlock horses; can we then see how horses behaved during T2A?

This demo is 10 years old and I do not understand no one published his/her work. Maybe that

DMCA thing is in the way?

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable.

ABOUT ME

I love computers, I love computer internals, I love hacking, but above all, I love my wife.

INTRODUCTION

When I started hacking and reverse engineering the demo, now more than a year ago, there

wasn’t much known about the internals. But with the help of IDA Pro and lots of time, a lot of

the core OSI functions/algorithms have been documented by me. In this document I will show

you the code required to implement fatigue loss when you move in the game, either by

walking or running.

Know that the move packet (02) is a two-byte packet in the demo and that anti-fastwalk code

was only added later on by OSI.

THE PULSE TABLE

OSI’s fatigue loss algorithm uses an array of 5 integers which initially contains the Server-

Side pulse number minus 1000 pulses. Pulse Number is the official OSI term inside their code.

On the internet OSI referred to a pulse as a tick. A tick is 250ms but if the server is too busy

a tick (or pulse) could take longer. There is also an index into this table which will be

increased per move packet.

The index and table are initialized when the Player Object is created:

…

� this->PulseIndex = 0;
…
int CurrentPulseNumMinus1000 = TimeManager.GetPulse Num() - 1000;
for(int i = 0; i < 5; i ++)
 this->PulseTable[i] = CurrentPulseNumMinus1000;

As shown later, this Pulse Table is used to detect the moving speed of the player.

MOVE PACKET

As mentioned earlier, the move packet will trigger the fatigue loss algorithm. Let’s take a

look at how this goes:

1) First the packet itself is received and using a switch/case statement, packet 02 will be

handled, this screenshot is part of the switch/case statement:

2) This is the Move Packet (or Move Request). This function will extract the 2 packet

variables (Direction & Sequence) and then call a member function of the Player class

to do the actual handling:

MOVE PACKET

As mentioned earlier, the move packet will trigger the fatigue loss algorithm. Let’s take a

look at how this goes.

1) The first step of this member function will use the Pulse Table to calculate the

difference with the previous move:

� int PulseDifference = TimeManager.GetPulseNum()

- this->PulseTable[this->PulseIndex];

2) The second step is code that divides 500 by the player’s ‘modified’ dexterity. This

step is unneeded since the calculated value is used nowhere else. The code

nonetheless:

� int Unused_500divModifiedDexterity = 500 / GetModif iedDexterity();

This is the actual GetModifiedDexterity member function:

� int ReturnValue = int(int(this->GetStat(1)) * 40) / 100 + 35;

if(ReturnValue > 163)
 ReturnValue = 163;
return ReturnValue;

NOTE: GetStat(1) will return the dexterity + its modifiers (like spell effects)

3) The third step inside the Move Packet handler (Move Request) is checking the

player’s fatigue level. If the player (or his mount) is too fatigued, then the move will

be denied! The code:

� if(! this->IsDead())

{
 if(this->IsFatigued())
 {
 if(this->IsMounted())
 this->SendSystemMessage
 (“Your horse is too fatigued to move.”);
 else
 this->SendSystemMessage
 (“You are too fatigued to move.”);
 this->DenyWalkRequest(); // or DenyMoveRequest, w hatever...
 }
}

NOTE: this code also includes a bug, if the player is fatigued but the horse (mount) is

 not then he/she’ll still see the message “Your horse is too fatigued to move.”!

To make the picture complete you will also need the IsFatigued virtual member

function. The IsFatigued function actually checks if the mobile itself is fatigued or its

mount. Mobiles include players and NPCs.

� int IsFatigued = this->GetCurFatigue() <= 0;

if(this->IsMounted())
{
 MOBILE *Mount = this->GetMountObject();
 if(Mount != NULL)
 {
 int IsMountFatigued;
 if(Mount->IsFatigued() || IsFatigued)
 IsMountFatigued = 1;
 else
 IsMountFatigued = 0;
 return IsMountFatigued;

 }
 this->Unmount(); // Should never occur!

}
return IsFatigued;

4) The fourth part I’m not going to pay much attention into. It is provided ‘as is’ for now:

5) The fifth part is much more important for the fatigue loss algorithm:

� int _500divPulseDifference = PulseDifference == 0

 ? 500
 : 500 / PulseDifference;

6) The sixth part of the algorithm will call the LoseFatigueByMoving member function of

the Mobile class (which also applies to players).

� if(! this->IsDead())

{
 int MoveIntensity = _500divPulseDifference <= 125 ? 100 : 400;
 this->LoseFatigueByMoving(MoveIntensity);
}

NOTE: The Pulse Difference is influenced by the number of packets received.

 Therefor: Running: MoveIntensity = Running: MoveIntensity = Running: MoveIntensity = Running: MoveIntensity = 400, Walking : MoveIntensity = 100400, Walking : MoveIntensity = 100400, Walking : MoveIntensity = 100400, Walking : MoveIntensity = 100.

7) The seventh step is the actual moving. If a player bounces against another player or

other objects, this goes on here. Changing direction also happens here; this means

that turning has great impact on the fatigue of a player, since the fatigue handling is

executed BEFORE the direction-changing code:

� ObjectAt6974AC.DoMove(this, (int) MoveDirection, Mo veSequence);

8) The eight step is updating the Pulse Table and increasing/rotating the Pulse Index:

� this->PulseTable[this->PulseIndex] = TimeManager.Ge tPulseNum();

this->PulseIndex = (this->PulseIndex + 1) % 5;

9) The ninth and last step is sending a Deny Request packet if the move was denied

earlier on (see step 3 and 4).

LOSE FATIGUE BY MOVING

Now let’s see what goes on when you lose fatigue by moving.

First the MoveIntensity (either 100 or 400) is modified based on the mobile’s encumbrance

(load percentage). If you are overloaded, the MoveIntensity is modified with the

WeightIntensity multiplied by 10, otherwise the MoveIntensity is modified with the

WeightIntensity divided by 10. This shows that being overloaded is punished severely.

� int ModdedMoveIntensity = MoveIntensity / 10;
int MoveIntensityModifier;
if(this->GetEncumbrance() <= 100)
 MoveIntensityModifier = this->GetWeightIntensity() * 10;
Else
 MoveIntensityModifier = this->GetWeightIntensity() / 10;
ModdedMoveIntensity = ModdedMoveIntensity + MoveInt ensityModifier;

The code executed next is deciding whether or not you are mounted:

If mounted, the mount’s fatigue is handled similar to that of the owner and a warning is given

if the level of fatigue (in percentages) dropped below 10. Also notice that the player will still

lose fatigue but only based on one third of the original ModdedMoveIntensity:

� if(this->IsMounted())
{
 MOBILE *Mount = this->GetMountObject();
 if(Mount == NULL)
 {
 this->Unmount();
 }
 else

 {
 int OldFatiguePercentage = int(this->GetCurF atigue() * 100)
 / this->GetMaxFatig ue();

 Mount->LoseFatigueByMoving(MoveIntensity);
 int NewFatiguePercentage = int(this->GetCurFati gue() * 100)
 / this->GetMaxFatigue();
 if(OldFatiguePercentage > 10 && NewFatiguePerc entage <= 10)
 this->SendSystemMessage(“Your horse is very f atigued.”);
 ModdedMoveIntensity = ModdedMoveIntensity / 3;
 }
}

The next step, executed for both mounts and mobiles (players and NPC’s), is modifying one

of its clocks (namely clockB):

� this->clockB = this->clockB + ModdedMoveIntensity;

Last but not least, the actual lowering of the fatigue based on this clock:

� while(this->clockB > 200)
{
 this->clockB = this->clockB – 200;
 this->SetCurFatigue(this->GetCurFatigue() – 1);
}

NOTE: SetCurFatigue will correct negative values to zero.

EXTRA FUNCTIONS

Let’s look at some other member functions used by the LoseFatigueByMoving member

function.

GetEncumbrance:

� int Divisor = this->GetCanCarry();
if(Divisor == 0) Divisor = 1;
return int(this->GetWeight() * 100) / Divisor;

GetCanCarry:

� return this->str * 4 + 30;

NOTE: the GetCanCarry function changed somewhere early on in the T2A era

GetWeight:

NOTE: I’ve only provided a screenshot of the beginning of this function which is inherited by

all in-game objects. What’s important is: all mobiles have a basic weight which is

equal to their MaxHP divided by two. Since horses don’t have a container this will be

the value returned for them. For other mobiles the weight of all items he/she’s

carrying will be added.

GetWeightIntensity:

� int Divisor = int(this->GetCanCarry() * this->GetH PLevel())
 / 100;
if(Divisor == 0)Divisor = 1;
return (this->GetWeight() * 100) / Divisor;

GetHPLevel:

� if(this->GetMaxHP() == 0) return 0;

return int(this->GetCurHP() * 100) / this->GetMaxHP ();

