
INSIDE THE ULTIMA ONLINE CLIENT

 - INSERTING A SLEEP

GOAL

The Ultima Online client utilizes too much CPU power when it’s not doing anything useful.

For example, when we are at the logon screen or when we lost connection with the server

during game play.

In this document I will describe how I made a patch for the client and hopefully, you learn

how to patch your own client when I’m not there to do it for you.

UTILITIES USED

IDA Pro, a very professional utility, definitely worth buying, Standard version is affordable

HxD, a very neat hex editor and above all, it’s free

ABOUT ME

I’m just a guy who loves the Ultima universe and knows a bit assembler. Why not combine

the two? ☺ I’ve been into computers starting from age 12, and Ultima VII was the first game I

bought myself, don’t ask how I acquired games before that. Oh yeah, I learned GFA Basic at

age 13, switched to Borland C++ 2.0 at age 14, and assembler came to me at age 15, and

that’s when it all started for real.

INSIDE THE CLIENT

There are many different clients out there, remember, client has a minimum 10 year old

history. Each binary is different but in the end will share some code with the original one.

Compilers also evolved and newer clients will utilize more and modern optimizations

techniques.

I chose to patch client version 5.0.8.3. Load it into IDA and read on.

Locating the message loop shouldn’t be too hard. UO Client is written in C++ thus the

message loop will look like this:

While(GetMessage(…))

{

 TranslateMessage(…);

 DispatchMessage(…);

}

or

GetMessage(…) can be replaced by PeekMessage(…) which is more common for games

anyways.

TEACH YOURSELF BY READING MORE ABOUT MESSAGE LOOPS

http://winprog.org/tutorial/message_loop.html

http://blogs.msdn.com/oldnewthing/archive/2005/02/09/369804.aspx

http://software.intel.com/en-us/articles/peekmessage-optimizing-applications-for-extended-

battery-life/

MAKING SENSE OF THE MESSAGE LOOP

Now that we have located the message loop we have to analyze it, we do this by adding

comments and/or renaming the labels IDA created for us. Feel free to use the built-in

debugger of IDA to help with understanding the structures and variables involved.

This is not really a tutorial about IDA Pro or about reversing in general; hence I’m not going

to provide you with too much details on how to do things.

Before analysis, a screenshot of what is the beginning of the message loop:

After analysis, we have a screenshot of this same part of the Message Loop:

Between the beginning of the loop and the actually PeekMessage call at 005360BE, the client

is doing stuff. Further analysis will be required to know what exactly is going on.

Next, here is a screenshot of the code part WinMain_NoMessageAvailable which is executed,

as the label says, in case there is no message available. ☺

Notice that before execution is resumed at LABEL_WinMain_BeginOfMessageLoop 3 different

code paths can be executed. Also, notice the usage of hPrevInstance! That parameter of

WinMain has not been in use since the release of Windows 95. It’s Windows 3.1 and earlier

stuff! This means that the UO Client is using the parameter for something else. At startup

(under 95 and up) it is guaranteed to be 0.

Further reading: http://blogs.msdn.com/oldnewthing/archive/2004/06/15/156022.aspx

We will further analyze this hPrevInstance thing, look at 0053618C, ESI is stored in

hPrevInstance, but where is ESI coming from? Look at 0053615B, the value of EAX is put in

ESI right after a function call stored in dword_89B2A4. Also, the function stored in

dword_89B2A4 is called more than once! Its meaning must be significant.

Picture of actual references to dword_89B2A4:

The variable is modified only once at 00535175. Let’s take a look there:

It’s actually something basic: GetTickCount. I renamed dword_89B2A4 to

GLOBAL_APICALL_GetTickCount, because that’s exactly what it is doing. Calling

dword_89B2A4 will call GetTickCount. Maybe OSI once thought about implementing different

techniques for time keeping but so far only GetTickCount seem to have been used.

This gives us a better picture of what is going inside the client when PeekMessage returns

zero:

Is it starting to make sense already? I decompiled some of the assembler stuff manually to C

representation. The next thing that comes to mind is: what is the meaning of

dword_081BE98?

It turns out to be a constant (=fixed value) with a value of 50 decimal or 32 hexadecimal. I

programmed games myself once and I too used a value 50 for frame rate control. ☺ My

experience came in handy here.

Also notice the reference aUo_cfg which is a string “uo.cfg”, so basically this tick count

control thing is initialized while loading the configuration file.

We are slowly starting to understand what’s going on at WinMain_NoMessageAvailable. This

is the function we need to patch to add some Sleep.

Look at the code paths above, loc_5361B4 is the most interesting one. Because that one is

called only when the client has time left. Loc_53619A on the other hand is called when

animation needs to be done. Very interesting stuff, also note that we can partially see how

frame-skipping is implemented, to further analyze frame-skipping we must look at

sub_508CF0 and see what happens what the argument is 1 (see 00536178).

To summarize:

GoHandleFrameOrSomethingGoHandleFrameOrSomethingGoHandleFrameOrSomethingGoHandleFrameOrSomething is called when the tick count difference >= 100.

loc_53619Aoc_53619Aoc_53619Aoc_53619A is called when tick count difference < 100 and >= 50.

loc_5361B4oc_5361B4oc_5361B4oc_5361B4 is called directly when tick count difference < 50 and when tick count difference

< 100.

Therefore loc_53619B4 is the most suitable place to patch.

We currently have:

 jmp LABEL_WinMain_BeginOfMessageLoop

The code must become:

 push 1

 call Sleep

 jmp LABEL_WinMain_BeginOfMessageLoop

This is the same in binary (opcode representation):

 E9 98 FE FF FF

To:

 6A 01

 FF 15 2C B2 57 00

 E9 ?? ?? ?? ??

� Originally we 5 bytes, our modified version is 11 bytes (2+6+5)

NOTE: the modified jump to LABEL_WinMain_BeginOfMessageLoop cannot easily be coded

because we do not know its relative location yet, an alternative form is to store the address in

a register and then jump to a register:

 push 1

 call Sleep

 mov eax, offset LABEL_WinMain_BeginOfMessageLoop

 jmp eax

This assembles to:

 6A 01

 FF 15 2C B2 57 00

 B8 56 60 53 00

 FE E0

-> 2 bytes more, thus 13 bytes are needed for such a patch.

To add code into the client we must locate some useable code. We can undefine alignments

and see if we have enough space to insert our code.

Let’s also look up the usage of existing calls to the Sleep API, the fact that the UO Client

does use the Sleep function somehow makes it easier to re-use it for our own purpose.

The actual patch, I will now show 3 screenshots with the actual patch applied. Each

screenshot shows how a jump is made to the next part of the patch. If you aren’t as lazy as

me, you can write a utility that will locate 11 unused bytes (by alignment) and then you can

put the patch into one single block. But again, I tend to be lazy, sometimes.

PATCHED CODE BLOCK 1:

PATHCED CODE BLOCK 2:

PATCHED CODE BLOCK 3:

And this is a screen shot of a binary comparison of the Sleep patch for the Ultima Online

Client Version 5.0.8.3, with proof that it actually works:

